2022年

[1] An Pei,# Ruikuan Xie,# Yun Zhang,# Yingliang Feng,# Weizhen Wang, Sifan Zhang, Zinan Huang, Lihua Zhu,* Guoliang Chai,* Zhiqing Yang,* Qingsheng Gao, Hengqiang Ye, Congxiao Shang, Bing Hui Chen and Zhengxiao Guo*, Effective electronic tuning of Pt single atoms via heterogeneous atomic coordination of (Co,Ni)(OH)2 for efficient hydrogen evolution,

Energy Environ. Sci., 2022, DOI: 10.1039/d2ee02785b.

[2] Jianwei Li, Ningjing Luo, Liqun Kang, Fangjia Zhao, Yiding Jiao, Thomas J. Macdonald, Min Wang, Ivan P. Parkin, Paul R. Shearing, Dan J.L. Brett, Guoliang Chai*, Guanjie He*, Hydrogen-Bond Reinforced Superstructural Manganese Oxide as the Cathode for Ultra-Stable Aqueous Zinc Ion Batteries,

Adv. Energy Mater., 2022, 2201840.

[3] Heming Liu, Ruikuan Xie, Yuting Luo, Zhicheng Cui, Qiangmin Yu, Zhiqiang Gao, Zhiyuan Zhang, Fengning Yang, Xin Kang, Shiyu Ge, Shaohai Li, Xuefeng Gao, Guoliang Chai, Le Liu, Bilu Liu*, Dual interfacial engineering of a Chevrel phase electrode material for stable hydrogen evolution at 2500 mA cm?2,

Nature Communications, 2022, 13, 6382.

[4] Yun Su, Xiaohui Rong*, Ang Gao, Yuan Liu, Jianwei Li, Minglei Mao, Xingguo Qi, Guoliang Chai, Qinghua Zhang, Liumin Suo, Lin Gu, Hong Li, Xuejie Huang, Liquan Chen, Binyuan Liu*, Yong-Sheng Hu*, Rational design of a topological polymeric solid electrolyte for high-performance all-solid-state alkali metal batteries,

Nature Communications, 2022, 13, 4181.

[5] Lihua Zhu*, Yilun Sun, Huaze Zhu, Guoliang Chai*, Zhiqing Yang*,  Congxiao Shang, Hengqiang Ye, Bing Hui Chen, Anna Kroner, Zhengxiao Guo*, Effective Ensemble of Pt Single Atoms and Clusters over the (Ni,Co)(OH)2 Substrate Catalyzes Highly Selective, Efficient, and Stable Hydrogenation Reactions,

ACS Catal., 2022, 12, 8104?8115.

[6] Huan Xie, Ruikuan Xie, Zhiyuan Zhang, Yongyu Pang, Yuting Luo, Jiong Li, Bilu Liu, Maria-Magdalena Titirici, Guoliang Chai*, Achieving highly selective electrochemical CO2 reduction to C2H4 on Cu nanosheets,

J. Energy Chem.,2022,https://doi.org/10.1016/j.jechem.2022.11.058

[7] Jianwei Li, Ningyun Hong, Ningjing Luo, Haobo Dong, Liqun Kang, Zhengjun Peng, Guofeng Jia, Guoliang Chai*, Min Wang*, Guanjie He*, In-situ electrochemical modification of pre-intercalated vanadium bronze cathodes for aqueous zinc-ion batteries,

Sci. China-Mater., 2022, 65, 1165-1175.

[8] Jiaoxing Xu, Yaqi Cui, Meilin Wang, Guoliang Chai* and Lunhui Guan*, Pyrimidine-assisted synthesis of S, N-codoped few-layered graphene for highly efficient hydrogen peroxide production in acid,

Chem Catal., 2022, 2, 1–17.

[9] Qinke Wu, Yuting Luo, Ruikuan Xie, Huiyu Nong, Zhengyang Cai, Lei Tang, Junyang Tan, Simin Feng, Shilong Zhao, Qiangmin Yu, Junhao Lin, Guoliang Chai*, Bilu Liu*, Space-Confined One-Step Growth of 2D MoO2/MoS2 Vertical Heterostructures for Superior Hydrogen Evolution in Alkaline Electrolytes,

Small, 2022, DOI: 10.1002/smll.202201051

[10] Ruikuan Xie, Tan Zhang, Hongming Weng, Guo-Liang Chai*, Progress, Advantages, and Challenges of Topological Material Catalysts,

Small Sci., 2022, 2100106.

[11] Ningjing Luo, Zhufeng Hou*, Guoliang Chai*, Density functional theory study of CH4 dissociation and C-C coupling on W-terminated WC(0001) surface,

Applied Surface Science, 2022, 591, 153128.

[12] Rong Guo, Zhufeng Hou, Jianshan Chen, Yeyan Qin*, Guoliang Chai*, Yuangen Yao*, Improved catalytic performance of Pd-Cu/NaY zeolite by tunning Al distribution for the synthesis of dimethyl carbonate, 

Fuel, 2022, 330, 125484.

[13] Wen-Dan Cheng,* Chen-Sheng Lin, Hao Zhang, Guo-Liang Chai*, Computational Study of Dynamic Susceptibility and Phase Matching Angle by Two-Photon Entangled Generation,

J. Phys. Chem. A, 2022, 126, 7787-7793.

[14] Ruikuan Xie, Zhufeng Hou*, Guo-Liang Chai*, Heusler alloy catalysts for electrochemical CO2 reduction,

J. Chem. Phys., 2022, 157, 074704.

[15] Yunxian Zhang, Yongyu Pang, Dong Xia, Guoliang Chai*, Regulable Pyrrolic-N-doped Carbon Materials as an Efficient Electrocatalyst for Selective O2 Reduction to H2O2,

New J. Chem., 2022, 46, 14510-14516.

[16] Guangqing Wu, Wu Chen, Yongyu Pang, Ruikuan Xie, Dong Xia, Guoliang Chai*, Modulating AgIn@In2O3 Core–Shell Catalysts for Amplified Electrochemical Reduction of CO2 to Formate,

ChemElectroChem, 2022, 9, e202200318.

[17] Dong Xia, Huayang Yu, Huan Xie, Peng Huang, Robert Menzel, Maria-Magdalena Titirici*, Guoling Chai*, Recent progress of Bi-based electrocatalysts for electrocatalytic CO2 reduction,

Nanoscale, 2022, 14, 7957-7973.

[18] Yi-Lun Sun, Jianshan Chen , Yeyan Qin , Hao Zhang , Yuangen Yao , Guo-Liang Chai *, Rhodium-based bidentate phosphorus ligand catalyst for direct synthesis of ethylene glycol,

Molecular Catalysis, 2022, 524, 112288.

[19] Yi-Lun Sun, Guo-Liang Chai*, Direct Synthesis of Ethylene Glycol from Syngas,

ChemistrySelect, 2022, 7, e202103642.

[20] Qun Li, Ningjing Luo, Dong Xia, Peng Huang, Xiaobin Liu, Tareque Odoom-Wubah, Jiale Huang, Guoliang Chai, Daohua Sun*, Qingbiao Li*, Interfacial effects in CuO/Co3O4 heterostructures enhance benzene catalytic oxidation performance,

Environ. Sci.: Nano, 2022, 9, 781–796.

2021年

[1]Huan Xie, Tan Zhang, Ruikuan Xie, Zhufeng Hou, Xuecong Ji, Yongyu Pang, Shaoqing Chen, Maria-Magdalena Titirici, Hongming Weng, Guoliang Chai,*Facet Engineering to Regulate Surface States of Topological Crystalline Insulator Bismuth RhombicDodecahedrons for Highly Energy Efficient Electrochemical CO2 Reduction,

Adv. Mater., 2021,2008373.

[2] Tianlei Wang, Arunabhiram Chutia, Dan J. L. Brett, Paul R., GuanjieHe,*Guoliang Chai,* Ivan P. Parkin,*Palladium alloys used as electrocatalysts for the oxygen reduction reaction,

Energy Environ. Sci., 2021, 14, 2639-2669.

[3] Jian Guo, Liqun Kang, Xuekun Lu, Siyu Zhao, Jianwei Li, Paul R., Ryan Wang, Dan J.L. Brett, GuanjieHe,*Guoliang Chai,* Ivan P. Parkin,* Self-activated cathode substrates in rechargeable zinc–air batteries,

Energy Storage Materials, 2021, 35, 530-537.

[4]Jun-Dong Yi, Duan-Hui Si, Ruikuan Xie, Qi Yin, Meng-Di Zhang, Qiao Wu, Guo-Liang Chai, Yuan-Biao Huang,* Rong Cao,*Conductive Two-Dimensional Phthalocyanine-basedMetal–Organic Framework Nanosheets for Efficient Electroreduction of CO2,

Angew. Chem. Int. Ed., 2021,60, 17108-17114.

[5] Yan Li, Junwei Li, Junheng Huang, Junxiang Chen, Yan Kong, Bin Yang, Zhongjian Li, Lecheng Lei, Guoliang Chai, ZhenhaiWen,* Liming Dai,* Yang Hou,*Boosting Electroreduction Kinetics of Nitrogen to Ammonia via Tuning Electron Distribution ofSingle-Atomic Iron Sites,

Angew. Chem. Int. Ed., 2021, 60, 9078-9085.

[6]Huan Xie, Shaoqing Chen, Jiashun Liang, Tanyuan Wang, ZhufengHou,* Hsing-Lin Wang, Guoliang Chai, Qing Li,*Weakening Intermediate Bindings on CuPd/Pd Core/shell Nanoparticles to Achieve Pt-Like Bifunctional Activity for Hydrogen Evolution and Oxygen Reduction Reactions,

Adv. Funct. Mater., 2021, 31, 2100883.

[7]Yeshu Tan, Ruikuan Xie, Siyu Zhao, Xuekun Lu, Longxiang Liu, Fangjia Zhao, Chunzhong Li, Hao Jiang,*Guoliang Chai, Dan J. L. Brett, Paul R. Shearing, Guanjie He,* Ivan P. Parkin*,Facile Fabrication of Robust Hydrogen Evolution Electrodes under High Current Densities via Pt@Cu Interactions,

Adv. Funct. Mater., 2021,31, 2105579.

[8]Xie H, Wan Y, Wang X, Liang J, Lu G, Wang T, Chai G, Adli NM, Priest C, Huang Y, Wu G, Li Q,*Boosting Pd-catalysis for electrochemical CO2 reduction to CO on Bi-Pd single atom alloy nanodendrites,

Appl. Catal. B-Environ., 2021, 289, 119783.

[9] Xiaoxia Guo, Zhenyu Zhang, Jianwei Li, Ningjing Luo, Guo-Liang Chai, Thomas S. Miller, Feili Lai, Paul Shearing, Dan J. L. Brett, Daliang Han, Zhe Weng, GuanjieHe,* Ivan P. Parkin,*Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives,

ACS Energy Lett., 2021, 6, 395?403.

[10] Zhang, T,#* Xu, SQ#, Hou, Y#, Chai, GL#,Olianas, D Liao, ZQ, Milani, A, Sun, HJ, Li, W, Zhang, Z, Mannsfeld, S, Zschech, E, Tommasini, M, Feng X*,Solvent-mediated engineering of copper-metalated acetylenic polymer scaffolds with enhanced photoelectrochemical performance dagger,

J. Mater. Chem. A, 2021,9,9729.

   [11] Siyu Zhao, Ruikuan Xie, Liqun Kang, Manni Yang, Xingyu He, Wenyao Li, Ryan Wang,Dan J. L. Brett, GuanjieHe,*Guoliang Chai,* and Ivan P. Parkin*, Enhancing Hydrogen Evolution ElectrocatalyticPerformance in Neutral Media via Nitrogen and IronPhosphide Interactions,

Small Sci., 2021,1,2100032.

    [12] Zhen Guo, Yongyu Pang, Huan Xie, Guanjie He, Ivan P. Parkin, andGuo-Liang Chai*, Phosphorus-Doped CuCo2O4 Oxide with Partial AmorphousPhase as a Robust Electrocatalyst for the Oxygen EvolutionReaction,

ChemElectroChem, 2021, 8, 135–141.

 [13] Yingshuang Sun, Jindong Chen, Shunda Yang, Bingxuan Li, Guoliang Chai,ChenshengLin,* Min Luo,* Ning Ye*,LaSiP3 and LaSi2P6: Two Excellent Rare-Earth Pnictides with Strong SHG Responses as Mid- and Far-Infrared Nonlinear Optical Crystals,

Adv. Optical Mater.,2021, 2002176.

[14] Jiajia Huang, Yuying Li, Ruikuan Xie, Jianwei Li, Zhihong Tian,*Guoliang Chai, Yanwu Zhang, Feili Lai, Guanjie He,*Chuntai Liu, Tianxi Liu, Dan J.L. Brett,Structural Engineering of Cathodes for Improved Zn-ion Batteries,

J. Energy. Chem., 2021,58, 147–155.

[15] Fang-Yu Yuan, Yi-Zhi Huang, Hao Zhang, Chen-Sheng Lin,*Guo-liang Chai,*Wen-Dan Cheng,Ba4GeSb2Se11: An Infrared Nonlinear Optical Crystal with a V-Shaped Se32 Group Possessing a Large Contribution to the SHG Response,

Inorg. Chem., 2021, 60, 15593?15598.

[16]Wei Wei,# Rui-Kuan Xie,# Shao-Wu Du,* Chong-Bin Tian,*Guo-Liang Chai,*Synthesis, structure, magnetocaloric effect and DFT calculations of a MnII cluster-based inorganic coordination polymer,

J. Alloy. Compd., 2021,160353.

[17]Yuan, FY, Lin, CS,* Huang, YZ, Zhang, H, Zhou, AY, Chai, GL*, Cheng, WD,BaCdGeSe4: Synthesis, structure and nonlinear optical properties,

J. Solid. State. Chem., 2021,302, 122352.

[18] RAO Shuang,LIN Chen-Sheng, HE Zhang-Zhen, CHAI Guo-Liang,* Theoretical Studies on the Electronic Properties of R2M14B (R = Lanthanides from La to Lu; M = Mn, Fe, Co, and Ni),

Chinese J. Struct. Chem., 2021, 40, 160-168.

[19] WANG Ke, PANG Yong-Yu, XIE Huan, SUN Yuan, CHAI Guo-Liang,*Synergistic Effect of Ta2O5/F-C Composites for Effective Electrosynthesis of Hydrogen Peroxide from O2 Reduction,

Chinese J. Struct. Chem., 2021, 40, 225-232.

[20] RAO Shuang, LIN Chen-Sheng, HE Zhang-Zhen, CHAI Guo-Liang,*Density Functional Theory Study on the Complete Substitutions of Nd and Fe by Other Rare-earth and Transition-metal Elements in Nd2Fe14B Compound,

Chinese J. Struct. Chem., 2021, 40, 136-144.

2020年

  [1] Jun-Dong Yi#, Ruikuan Xie#, Zai-Lai Xie, Guo-Liang Chai*, Rui-Ping Chen,Yuan-Biao Huang*,and Rong Cao*, Highly Selective CO2 Electroreduction to CH4 by in situ Generated Cu2O Single-Type Sites on Conductive MOF: Stabilizing Key Intermediates with Hydrogen Bond,     

  Angew. Chem. Int. Ed., 2020, DOI: 10.1002/anie.202010601.     

  [2] Chaojun Lei, Qiang Zheng, Fanpeng Cheng, Yang Hou*, Bin Yang, Zhongjian Li,Zhenhai Wen, Lecheng Lei, Guoliang Chai*, and Xinliang Feng*, High-Performance Metal-Free Nanosheets Array Electrocatalyst for Oxygen Evolution Reaction in Acid,  

  Adv. Funct. Mater., 2020, 2003000.    

  [3] Yongyu Pang, Ke Wang, Huan Xie, Yuan Sun, Maria-Magdalena Titirici, and Guo-Liang Chai*, Mesoporous Carbon Hollow Spheres as Efficient Electrocatalysts forOxygen Reduction to Hydrogen Peroxide in Neutral Electrolytes,   

  ACS Catal., 2020, 10, 7434-7442.    

  [4] Qiao Wu, Rui-Kuan Xie, Min-Jie Mao, Guo-Liang Chai, Jun-Dong Yi, Shao-Shuai Zhao, Yuan-Biao Huang*, and Rong Cao*, Integration Strong Electron Transporter Tetrathiafulvalene into Metalloporphyrin-based Covalent Organic Framework for Highly Efficient Electroreduction of CO2,  

  ACS Energy Letters, 2020, 5, 1005-1012.    

  [5] Jiajia Huang, Jingyi Wang, Ruikuan Xie, Zhihong Tian, Guoliang Chai, Yanwu Zhang, FeiliLai*, Guanjie He*, Chuntai Liu, Tianxi Liu, Paul R. Shearing and Dan J.L. Brett, A Universal pH range and Highly-efficient Mo2C-based Electrocatalyst for the Hydrogen Evolution Reaction    

  J. Mater. Chem. A, 2020, DOI: 10.1039/D0TA07091B. 

  [6] Xiang Hu, Yuchuan Liu, Haitao Huang, Baobing Huang, Guoliang Chai* and Zailai Xie*, Template-free Synthesis of Graphene-like Carbons as Efficient Carbocatalysts for Selective Oxidation of Alkanes,    

  Green Chem., 2020,22,1291.   

  [7] Jianwei Li, Ningjing Luo,Feng Wan, Siyu Zhao, Zhuangnan Li, Wenyao Li, Jian Guo, Paul R. Shearing, Dan J. L. Brett, Claire J. Carmalt, Guoliang Chai*, Guanjie He* and Ivan P. Parkin*, Defected vanadium bronzes as improved cathodes in aqueous zinc-ion batteries,     

  Nanoscale, 2020, DOI: 10.1039/D0NR03394D.     

  [8] Xiaoxin Li, Guoliang Chai*, Xiao Xu, Jingjing Liu, Zhou Zhong, Aihui Cao,Zhijie Tao, Weifeng You, Longtian Kang*, Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites    

  Carbon, 2020, 167, 658-667.     

  [9] Anyi Zhou, Chensheng Lin, Bingxuan Li, Wendan Cheng, Zhengxiao Guo, Zhufeng Hou, Fangyu Yuan and Guo-Liang Chai*, Ba6In6Zn4Se19: A High Performance Infrared Nonlinear Optical Crystal with [InSe3]3- Trigonal Planar Functional Motifs,   

  J. Mater. Chem. C, 2020, 8, 7947.     

    

2019年

  [1] Emilia Olsson, Guoliang Chai, Martin Dove, and Qiong Cai*, Adsorption and migration of alkali metals (Li, Na, and K) onpristine and defective graphene surface, 

  Nanoscale, 2019, 11, 5274. 

  [2] Ying Hou, Yuan-Biao Huang, Yu-Lin Liang, Guo-Liang Chai, Jun-Dong Yi, Teng Zhang, Ke-Tao Zang,Jun Luo, Rui Xu, Hua Lin, Su-Yuan Zhang, Hui-Min Wang and Rong Cao*,Unraveling the Reactivity andSelectivity of Atomically IsolatedMetal–Nitrogen Sites Anchored onPorphyrinic Triazine Frameworks forElectroreduction of CO2,    

  CCS Chem.,2019, 1, 384–395.    

  [3] An-Yi Zhou, Wei-Long Zhang, Chen-Sheng Lin, Fang-Yu Yuan, Yong-Yu Pang, Hao Zhang,Wen-Dan Cheng*, Jing Zhu*, and Guo-Liang Chai*, Ba10In6Zn7S26-nZnS: An Inorganic Composite System with InterfacePhase-Matching Tuned for High-Performance Infrared NonlinearOptical Materials,    

  Inorg. Chem., 2019, 58, 6, 3990-3999.    

  [4] Xuemin Tian, Chensheng Lin, Zhou Zhong, Xiaoxin Li, Xiao Xu, Jingjing Liu, Longtian Kang*, Guoliang Chai*, and Jiannian Yao*, Effect of Axial Coordination of Iron Porphyrin on Their Nanostructures and Photocatalytic Performance, 

  Cryst. Growth Des.,2019, 19, 3279-3287.  

  [5] Jun-Dong Yi, Rui Xu, Guo-Liang Chai, Teng Zhang, Ketao Zang, Bing Nan, Hua Lin, Yu-Lin Liang, Jiangquan Lv, Jun Luo, Rui Si, Yuan-Biao Huang* and Rong Cao*, Cobalt single-atoms anchored on porphyrinictriazine-based frameworks as bifunctionalelectrocatalysts for oxygen reduction andhydrogen evolution reactions,    

  J. Mater. Chem. A, 2019, 7, 1252.  

  [6] Xiao Ma*, Jipeng Li, Chensheng Lin, Guoliang Chai, Yangbin Xie, Wei Huang, DayuWu*, and Wai-Yeung Wong*, Room Temperature Fluorescence-Phosphorescence DualEmission Switched by Mechanical Grinding and PressureinducedPhosphorescent Enhancement for Pyridinium-basedWhite Light Emitter,    

  Phys. Chem. Chem. Phys., 2019, 21, 14728-14733.      

  [7] Lin Chensheng, Zhou An-Yi,Cheng Wendan, Ye Ning, Guoliang Chai*, Atom-Resolved Analysis of Birefringence of Nonlinear Optical Crystals by Bader Charge Integration, 

  J. Phys. Chem. C, 2019, 123, 31183-31189.  

2018年

  [1] Yan Li+, Junheng Huang+, Xiang Hu+, Linlin Bi, Pingwei Cai, Jingchun Jia, Guoliang Chai*, Shiqiang Wei*, Liming Dai, and Zhenhai Wen*, Fe Vacancies Induced Surface FeO6 in Nanoarchitectures of N-doped Graphene Protected β-FeOOH: Effective Active Sites for pH-universal Electrocatalytic Oxygen Reduction,  

  Adv. Funct. Mater., 2018, 1803330. 

  [2]Jia Guo+, Xiaomei Yan+, Qin Liu, Qiang Li, Xiao Xu, Longtian Kang*, Zhanmin Cao*, Guoliang Chai*, Jun Chen, Yaobing Wang, Jiannian Yao, The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction,    

  Nano Energy, 2018, 46, 347-355.  

  [3] Tao Zhang+, Yang Hou+, Volodymyr Dzhagan, Zhongquan Liao, Guoliang Chai, Markus Lffler, Davide Olianas, Alberto Milani, Shunqi Xu, Matteo Tommasini, Dietrich R.T. Zahn, Zhikun Zheng, Ehrenfried Zschech, Rainer Jordan, Xinliang Feng*, Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes,  

  Nature Comm. 2018, DOI:10.1038/s41467-018-03444-0.  

  [4] Wendan Cheng*, Chensheng Lin, Hao Zhang, and Guoliang Chai*, Theoretical Evaluation on Terahertz Source Generator from Ternary Metal Chalcogenides of PbM6Te10 (M = Ga, In),   

  J. Phys. Chem. C, 2018, DOI: 10.1021/acs.jpcc.7b10972.  

  [5] Huang, Yi-Zhi, Zhang, Hao, Lin, Chen-Sheng, Cheng, Wendan, Guo, Zheng Xiao, Chai, Guo-Liang*, PbGa2GeS6: An Infrared Nonlinear Optical Material Synthesized by A Intermediate-Temperature Self-Fluxing Method,  

  Crystal Growth & Design, 2018, 18, 1162-1167.  

  [6] Chensheng Lin, Wendan Cheng, Guoliang Chai*, Hao Zhang, Thermoelectric Properties of Two-Dimensional Selenene and Tellurene from Group-VI Elements, 

  Phys. Chem. Chem. Phys., 2018, DOI: 10.1039/C8CP04069A 

  [7] Wei Zhang, QuanSheng Wu, Oleg V. Yazyev, HongmingWeng*,Zhengxiao Guo,Wen-Dan Cheng, and Guo-Liang Chai*,Topological phase transitions driven by strain in monolayer tellurium, 

  Phys. Rev. B,2018, 98, 115411. 

2017年

  [1] Guo-Liang Chai*+, Kaipei Qiu+, Mo Qiao, Maria-Magdalena Titirici, Congxiao Shang and Zhengxiao Guo*, Active Sites Engineering Leads to Exceptional ORR and OER Bifunctionality in P,N Co-Doped Graphene Frameworks,   

  Energy Environ. Sci., 2017, 10, 1186-1195.  

  [2] Lin Ye, Guoliang Chai*, and Zhenhai Wen*, Zn-MOF-74 Derived N-Doped Mesoporous Carbon as pH-Universal Electrocatalyst for Oxygen Reduction Reaction,   

  Adv. Funct. Mater., 2017, 1606190.  

  [3] Guo-Liang Chai*, M. Boero, Z. Hou, K. Terakura, and W. D. Cheng, Indirect Four-Electron Oxygen Reduction Reaction on Carbon Materials Catalysts in Acidic Solutions,  

  ACS Catal. 2017, 7, 7908-7916.  

  [4] Xiang Hu, Junxiang Chen, Guang Zeng, Jingchun Jia, Pingwei Cai, Guoliang Chai* and Zhenhai Wen*, Robust 3D Macroporous Structures with SnS Nanoparticle Decorating Nitrogen-doped Carbon Nanosheet Networks for High-Performance Sodium-Ion Batteries,  

  Journal of Materials Chemistry A, 2017, 5, 23460. 

  [5] Guo-Liang Chai, Stephen A. Shevlin and Zhengxiao Guo*, Nitrogen-Mediated Graphene Oxide Enables Highly Efficient Proton Transfer,  

  Scientific Reports, 2017, 7, 5213.  

  [6] Guo-Liang Chai*, Zhufeng Hou, Takashi Ikeda, and Kiyoyuki Terakura, Two-Electron Oxygen Reduction on Carbon Materials Catalysts: Mechanisms and Active Sites,  

  The Journal of Physical Chemistry C, 2017, 121, 14524 -14533.  

  [7] Chensheng Lin, Wendan Cheng, Zhengxiao Guo, Guoliang Chai*, and Hao Zhang, Exceptional Thermoelectric Performance of a “Star-Like” SnSe Nanotube with Ultra-Low Thermal Conductivity and a High Power Factor,  

  Physical Chemistry Chemical Physics, 2017, 19, 23247-23253.  

  [8] Wen-Dan Cheng*, Chen-Sheng Lin, Hao Zhang, Yi-Zhi Huang, and Guo-Liang Chai, Theoretical Evaluation of Terahertz Sources Generated From SnGa4Q7 (Q=S, Se) as Infrared Nonlinear Optical Materials,  

  ChemPhysChem, 2017, 18, 519.  

Copyright:The Chai’s Research Group. Technology Support:Technical support center
Phone:+86-0591-63173102, Mail:g.chai@fjirsm.ac.cn
Address:155 Yangqiao Road West Fuzhou, 350002, P.R.China
Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences