中国科学院 ARP系统 继续教育网 English 邮箱登录 网站地图
您现在的位置:首页>通知公告>学术报告
Advanced Atomic Catalysts Design for Energy Systems
更新日期:2023-05-22  

  题  目:Advanced Atomic Catalysts Design for Energy Systems

  报告人:Bolong Huang 教授

  单  位:香港理工大学应用生物及化学科技学系

  时  间:2023/5/23  8:30-9:30

  地  点:海西研究院2号楼228会议室

  附简介:

  Currently, atomic catalysts (ACs) as the frontier research topics have attracted tremendous attention. To supply theoretical guidance for designing novel electrocatalysts, we have carried out a comprehensive mapping study of graphdiyne (GDY) based ACs. First, we have proposed the “Redox Barrier Model” to quantify the capability of electron exchange and transfer (ExT), which enables the comparison of different AC systems. For the hydrogen evolution (HER) process, we have extended the conventional indicator of proton binding energy to more diverse indicators including chemical binding energy, desorption energy, and electronic structures. For the first time, we have identified GDY-Eu and GDY-Sm as two promising electrocatalysts for HER, which are also verified by machine learning. For the developments of dual atomic catalysts (DACs),  we have investigated the formation stability and electronic modulations for all the combinations between transition metals (TMs) and lanthanide (Ln) metals. Due to the electronic self-balance effects by f-d orbital coupling, the combinations between the Ln metals and TMs achieve optimized stability and electroactivity of GDY-DACs. Meanwhile, the introduction of the main group elements enables activations of the electroactivity of GDY. Recently, we have also achieved the applications of GDY-ACs for the CO2 reduction reaction (CO2RR) with a comprehensive reaction pathway mapping of C1 and C2 products for the first time, where different metal selections display distinct selectivity and reaction trends. We propose the integrated large-small cycle mechanism to explain the challenges for C2 product generation and identify the double-dependence correlation with metal and active sites. First-principle machine learning predicts the reaction energy of C-C couplings, where the adsorptions of the intermediates are critical to achieving accurate predictions of multi-carbon products. Therefore, these theoretical explorations have supplied important theoretical insights into the applications of ACs, opening a new avenue for the rational design of ACs for different energy systems.