2024年

1.Zhang, X.; Xiong, W.; Wang, T.; Chai, E.; Lin, J.; Huang, L.; Feng,Y.; Wu, M.;Wang, Y.*,Cascade electrosynthesis of LiTFSI and N-containing analogues via a looped Li-N2 battery. Nat. Catal. 2024, 7 (1), 55-64.

2.    Zhou, E.; Zhang, X.; Zhu, L.; Chai, E.; Cheng, J.; Li, J.; Kang, L.; Yuan, D.; Sun, Q.; Wang, Y.*, Ultrathin Covalent Organic Framework Nanosheets for Enhanced Photocatalytic Water Oxidation. Sci. Adv. 10, eadk8564 (2024)

3.    Lin, W.; Lin, F.; Lin, J.; Xiao, Z.; Yuan, D.; Wang, Y.*, Efficient Photocatalytic CO(2) Reduction in Ellagic Acid-Based Covalent Organic Frameworks. J. Am. Chem. Soc. 2024. DOI: 10.1021/jacs.4c04185

4.    Feng, Y.; Huang, L.; Xiao, Z.; Zhuang, X.; Aslam, T. S.; Zhang, X.; Tan, Y. X.; Wang, Y.*, Temporally Decoupled Ammonia Splitting by a Zn-NH(3) Battery with an Ammonia Oxidation/Hydrogen Evolution Bifunctional Electrocatalyst as a Cathode. J. Am. Chem. Soc. 2024, 146 (11), 7771-7778.

5.    Zhou, E.; Wang, F.; Zhang, X.; Hui, Y.; Wang, Y.*, Cyanide‐based Covalent Organic Frameworks for Enhanced Overall Photocatalytic Hydrogen Peroxide Production. Angew. Chem. Int. Ed. 2024, 63 (19).

6.    Borse, R. A.; Tan, Y. X.; Lin, J.; Zhou, E.; Hui, Y.; Yuan, D.; Wang, Y.*, Coupling Electron Transfer and Redox Site in Boranil Covalent Organic Framework Toward Boosting Photocatalytic Water Oxidation. Angew. Chem. Int. Ed. 2024, 63 (13), e202318136.

7.    Xiao, Z.; Wu, H.; Jiao, L.; Zhang, X.; Wang, Y.*, A dual-functional metalloporphyrin-fluorenone covalent organic framework for solar hydrogen and oxygen production. J. Mater. Chem. A 2024, 12 (13), 7515-7521.

8.    Li, J.; Tan, Y.-X.; Lin, J.; Feng, Y.; Zhang, X.; Zhou, E.; Yuan, D.;Wang, Y.*, Coupling electrocatalytic redox-active sites in a three-dimensional bimetalloporphyrin-based covalent organic framework for enhancing carbon dioxide reduction and oxygen evolution. J. Mater. Chem. A 2024, 12 (16), 9478-9485.

9.    Chai, E.; Huang, L.; Jiao, L.; Xiao, Z.; Zhang, X.; Wang, Y.*, A multicomponent triformylphoroglucinol-based covalent organic framework for overall hydrogen peroxide photosynthesis. Chem Commun 2024, 60 (25), 3405-3408.


2023年

1.    Feng, Y.; Li, Y.; Lin, J.; Wu, H.; Zhu, L.; Zhang, X.; Zhang, L.; Sun,c. F.; Wu, M.; Wang, Y.*, Production of high-energy 6-Ah-level Li LiNi0.83Co0.11Mn0.06O2 multi-layer pouch cells via negative electrodeprotective layer coating strategy. Nat. Commun. 2023, 14, 3639.

2.    Lin, W.; Lin, J.; Zhang, X.; Zhang, L.; Borse, R. A.; Wang, Y.*, Decoupled artificial photosynthesis via a catalysis-redox coupled COF BiVO4 photoelectrochemical device. J. Am. Chem. Soc. 2023, 145, 18141-18147.

3.    Jiao, L.; Zhang, X.; Feng, Y.; Lin, J.; Yuan, D.; Wang, Y.*, Coupledsolar battery with 6.9% efficiency. Angew. Chem. Int. Ed. 2023, 62, e202306506.

4.    Tan, Y.; Lin, J.; Li, Q.; Li, L.; Borse, R. A.; Lu, W.; Wang, Y.*; Yuan, D., Overcoming the trade-off between C2H2 sorption and separation performance by regulating metal-alkyne chemical interaction in metal-organic frameworks. Angew. Chem. Int. Ed. 2023, 62, e202302882.

5.    Zhang, L.; Wang, Y.*, Decoupled artificial photosynthesis. Angew. Chem. Int. Ed. 2023, 62, e202219076.

6.    Tan, Y.; Zhang, X.; Lin, J.; Wang, Y.*, A perspective on photoelectrochemical storage materials for coupled solar batteries. Energy Environ. Sci. 2023, 16, 2432.

7.    Yan, S.; Feng, Y.; Lin, J.; Wang, Y.*, Metal-redox biocatalyst batteries for energy storage and chemical production. Adv. Mater. 2023, e2212078.

8.    Feng, Y.; Yan, S.; Zhang, X.; Wang, Y.*, Development, essence, and application of a metal-catalysis battery. Acc. Chem. Res. 2023, 56, 1645-1655.

9.    Zhou, E.; Zhang, X.; Zhu, L.; Yuan, D.; Wang, Y.*, A solar responsive battery based on charge separation and redox coupled covalent organic framework. Adv. Funct. Mater. 2023, 33, 2213667.

10. Chen, J.; Yuan, D.; Wang, Y.*, Covalent organic frameworks based heterostructure in solar-to-fuel conversion. Adv. Funct. Mater. 2023, 33, 2304071.

11. Liu, Z.; Yan, S., Fang Q., Wang, Y.; Yuan, D.*, Three dimensional cyclic trinuclear units based metal–covalent organic frameworks for electrochemical CO2RR. Chem. Commun, 2023, 59(63): 9615-9617.


2022年

1.  Lv,J.;Xie,J.;Mohamed,A. G. A.;Zhang,X.;Feng,Y.;Jiao,L.;Zhou,E.;Yuan,D.;Wang,Y.*,Solar utilization beyond photosynthesis. Nat. Rev. Chem. 2023,7,91-105.

2.Lv,J.;Xie,J.;Mohamed,A. G. A.;Zhang,X.;Wang,Y.*,Photoelectrochemical energy storage materials: design principles and functional devices towards direct solar to electrochemical energy storage. Chem. Soc. Rev. 2022,51 (4),1511-1528.

3.  Wang,W.;Zhang,X.;Lin,J.;Zhu,L.;Zhou,E.;Feng,Y.;Yuan,D.;Wang,Y.*,A Photoresponsive Battery Based on a Redox-Coupled Covalent-Organic-Framework Hybrid Photoelectrochemical Cathode. Angew. Chem. Int. Ed. 2022,61 (50).

4.  Feng,Y.;Shi,Q.;Lin,J.;Chai,E.;Zhang,X.;Liu,Z.;Jiao,L.;Wang,Y.*,Decoupled Electrochemical Hydrazine"Splitting"via a Rechargeable Zn-Hydrazine Battery. Adv. Mater. 2022,34 (51).

5.  Lin,W.;Zhou,E.;Xie,J.;Lin,J.;Wang,Y.*,A High Power Density Zn-Nitrate Electrochemical Cell Based on Theoretically Screened Catalysts. Adv. Funct. Mater. 2022,32 (46).

6.  Borse,R. A.;Kale,M. B.;Sonawane,S. H.;Wang,Y.*,Fluorographene and Its Composites: Fundamentals,Electrophysical Properties,DFT Studies,and Advanced Applications. Adv. Funct. Mater. 2022,32 (26).

7.  Feng,Y.;Guan,Y.;Zhou,E.;Zhang,X.;Wang,Y.*,Nanoscale Double-Heterojunctional Electrocatalyst for Hydrogen Evolution. Adv. Sci. 2022,9 (18).

8.  Li,Q.;Si,D.;Lin,W.;Wang,Y.;Zhu,H.;Huang,Y. *;Cao,R.*,Highly efficient electroreduction of CO2 by defect single-atomic Ni-N3 sites anchored on ordered micro-macroporous carbons. Sci. China. Chem. 2022,65 (8),1584-1593.

9.  Chen,Y.;Chen,Z.;Zhang,X.;Chen,J.;Wang,Y.*,An organic-halide perovskite-based photo-assisted Li-ion battery for photoelectrochemical storage. Nanoscale 2022,14 (30),10903-10909.

10. Borse,R. A.;Kale,M. B.;Srinivasan,S.;Sonawane,S. H.;Wang,Y.*,Sonochemical Approach of Highly Thermal,Mechanical,and Corrosion Inhibition Performance of Metal-Organic Framework (ZIF-8)-Decorated Waterborne Polyurethane Nanocomposite. Adv. Eng. Mater. 2023,25 (9).

11.  Borse,R. A.;Kale,M. B.;Hakke,V. S.;Pandi,N.;Sonawane,S. H.;Wang,Y.*,Synthesis and Characterization of Multifunctional Metal-Organic Framework (Ni-ZIF-67) Decorated Waterborne Polyurethane (Ni-ZIF-67/WPU) Nanocomposites: Sonochemical Approach. Adv. Mater. Interfaces 2023,10 (1).


2021年

1.     Zhang, X.; Su, K.; Mohamed, A. G. A.; Liu, C.; Sun, Q.; Yuan, D.; Wang, Y.; Xue, W.; Wang, Y.*, Photo-assisted charge/discharge Li-organic battery with a charge-separated and redox-active C60@porous organic cage cathode. Energy Environ. Sci. 2022, 15 (2), 780-785.

2.    Huang, Y.; Mohamed, A. G. A.; Xie, J.; Wang, Y.*, Surface evolution of electrocatalysts in energy conversion reactions. Nano Energy, 2021, 82: 105745.

3.     Kale, M. B.; Borse, R. A.; Mohamed, A. G. A.; Wang, Y.*, Electrocatalysts by Electrodeposition: Recent Advances, Synthesis Methods, and Applications in Energy Conversion. Adv. Funct. Mater. 2021, 31 (25).

4.     Mohamed, A. G. A.; Zhou, E.; Zeng, Z.; Xie, J.; Gao, D.; Wang, Y.*, Asymmetric Oxo-Bridged ZnPb Bimetallic Electrocatalysis Boosting CO2-to-HCOOH Reduction. Adv. Sci. 2022, 9 (4).

5.    Yang, R.; Zeng, Z.; Peng, Z.; Xie, J.; Huang, Y.; Wang, Y.*, Amorphous urchin-like copper@nanosilica hybrid for efficient CO2 electroreduction to C2+products. J. Energy Chem. 2021, 61, 290-296.

6.    Mohamed, A. G. A.; Zhang, X.; Wang, Y.*, Facile synthesis of RuOx/SiC/C for photoelectrocatalysis. Inorg. Chem. Front. 2021, 8 (15), 3733-3739.

7.    Zeng, Z.; Mohamed, A. G. A.; Zhang, X.; Wang, Y.*, Wide Potential CO2-to-CO Electroreduction Relies on Pyridinic-N/Ni-Nx Sites and Its Zn-CO2 Battery Application. Energy Technol. 2021, 9 (8).


2020年

1.   Yang, X.; Deng, W.; Chen, M.; Wang, Y.; Sun, C.*, Mass-Producible, Quasi-Zero-Strain, Lattice-Water-Rich Inorganic Open-Frameworks for Ultrafast-Charging and Long-Cycling Zinc-Ion Batteries. Adv. Mater. 2020, 32 (45).

2.   Mohamed, A. G. A.; Huang, Y.; Xie, J.; Borse, R. A.; Ganji, P.; Wang, Y.*, Metal-free sites with multidimensional structure modifications for selective electrochemical CO2 reduction. Nano Today 2020, 33.

3.   Huang, Y.; Babu, D. D.; Peng, Z.; Wang, Y.*, Atomic Modulation, Structural Design, and Systematic Optimization for Efficient Electrochemical Nitrogen Reduction. Adv. Sci. 2020, 7 (4).

4.   Wang, X.; Ghausi, M. A.; Yang, R.; Wu, M.; Xie, J.; Wang, Y.*, A photovoltaic-driven solid-state Zn-CO2 electrochemical cell system with sunlight-insusceptible chemical production. J. Mater. Chem. A 2020, 8 (27), 13806-13811.

5.   Wang, W.; Borse, R. A.; Xie, J.; Wang, Y.*, Spontaneously producing syngas from MFC-MEC coupling system based on biocompatible bifunctional metal-free electrocatalyst. Sci. China Mater. 2021, 64 (3), 592-600.

6.   Ganji, P.; Borse, R. A.; Xie, J.; Mohamed, A. G. A.; Wang, Y.*, Toward commercial carbon dioxide electrolysis. Adv. Sust. Syst. 2020, 4(8): 2000096..

7.   Mohamed, A. G. A.; Naqviab, S. A. Z.; Wang, Y.*, Advances and Fundamental Understanding of Electrocatalytic Methane Oxidation. Chemcatchem 2021, 13 (3), 787-805.

8.   Peng, Z.; Huang, Y.; Wang, J.; Yang, R.; Xie, J.; Wang, Y.*, Metal-Modulated Nitrogen-Doped Carbon Electrocatalyst for Efficient Carbon Dioxide Reduction. Chemelectrochem 2020, 7 (5), 1142-1148.

9.   Xie, J.; Ghausi, M. A.; Wang, J.; Wang, X.; Wang, W.; Yang, R.; Wu, M.; Zhang, Q.; Wang, Y.*, Low-Energy CO2 Reduction on a Metal-Free Carbon Material. Chemelectrochem 2020, 7 (9), 2145-2150.

10.  Yang, R.; Peng, Z.; Xie, J.; Huang, Y.; Borse, R. A.; Wang, X.; Wu, M.; Wang, Y.*, Reversible Hybrid Aqueous Li-CO2 Batteries with High Energy Density and Formic Acid Production. Chemsuschem 2020, 13 (10), 2621-2627.


2019年

1.    Wang, X.; Xie, J.; Ghausi, M. A.; Lv, J.; Huang, Y.; Wu, M.; Wang, Y.*; Yao, J., Rechargeable Zn-CO2 Electrochemical Cells Mimicking Two-Step Photosynthesis. Adv. Mater. 2019, 31 (17).

2.    Xie, J.; Wang, Y.*, Recent Development of CO2 Electrochemistry from Li-CO2 Batteries to Zn-CO2 Batteries. Acc. Chem. Res. 2019, 52 (6), 1721-1729.

3.    Xie, J.; Zhou, Z.; Wang, Y.*, Metal-CO2 Batteries at the Crossroad to Practical Energy Storage and CO2 Recycle. Adv. Funct. Mater. 2020, 30 (9).

4.    Babu, D. D.; Huang, Y. ; Anandhababu, G.; Wang, X.; Si, R.; Wu, M.;  Li, Q.*; Wang, Y.*; Yao, J., Atomic iridium@cobalt nanosheets for dinuclear tandem water oxidation. J. Mater. Chem. A 2019, 7 (14), 8376-8383.

5.    Li, W.; Lv, J.; Li, Q.; Xie, J.; Ogiwara, N.; Huang, Y.; Jiang, H.; Kitagawa, H.; Xu, G.*; Wang, Y.*, Conductive metal-organic framework nanowire arrays for electrocatalytic oxygen evolution. J. Mater. Chem. A 2019, 7 (17), 10431-10438.

6.    Lv, J.; Zeng, P.; Abbas, S. C.; Guan, X. Luo, P.; Chen, D.; Wang, Y.*, Electrochemically scalable production of bilayer fluorographene nanosheets for solid-state supercapacitors. J. Mater. Chem. A 2019, 7 (28), 16876-16882.

7.    Xie, J.; Huang, Y.; Wu, M.; Wang, Y.*, Electrochemical carbon dioxide splitting. ChemElectroChem, 2019, 6(6): 1587-1604.

8.    Peng, Z.; Abbas, S. C.; Lv, J.; Yang, R.; Wu, M.; Wang, Y.*, Mixed-metal organic framework-coated ZnO nanowires array for efficient photoelectrochemical water oxidation. Int. J. Hydrogen Energy 2019, 44 (5), 2446-2453.


2018年

1.   Lv, J.; Tan, Y.; Xie, J.; Yang, R.; Yu, M.; Sun, S.; Li, M.; Yuan, D.; Wang, Y.*, Direct Solar-to-Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Angew. Chem. Int. Ed. 2018, 57 (39), 12716-12720.

2.   Ghausi, M. A.; Xie, J.; Li, Q.; Wang, X.; Yang, R.; Wu, M.; Wang, Y.*; Dai, L.*, CO2 Overall Splitting by a Bifunctional Metal-Free Electrocatalyst. Angew. Chem. Int. Ed. 2018, 57 (40), 13135-13139.

3.   Xie, J.; Zhao, X.; Wu, M.; Li, Q.*; Wang, Y.*; Yao, J., Metal-Free Fluorine-Doped Carbon Electrocatalyst for CO2 Reduction Outcompeting Hydrogen Evolution. Angew. Chem. Int. Ed. 2018, 57 (31), 9640-9644.

4.   Xie, J.; Wang, X.; Lv, J.; Huang, Y.; Wu, M.; Wang, Y.*; Yao, J., Reversible Aqueous Zinc-CO2 Batteries Based on CO2-HCOOH Interconversion. Angew. Chem. Int. Ed. 2018, 57 (52), 16996-17001.

5.   Huang, Y.; Wang, Y.; Tang, C.; Wang, J.; Zhang, Q.*; Wang, Y.*; Zhang, J.*, Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal-Air Batteries. Adv. Mater. 2019, 31 (13).

6.   Huang, Y.; Yang, R.;Anandhababu, G.;  Xie, J.; Lv, J.; Zhao, X.; Wang, X.; Wu, M.; Li, Q.*; Wang, Y.*, Cobalt/Iron(Oxides) Heterostructures for Efficient Oxygen Evolution and Benzyl Alcohol Oxidation Reactions. ACS Energy Lett. 2018, 3 (8), 1854-1860.

7.   Wang, Q.; Ji, Y.; Lei, Y.*; Wang, Y.; Wang, Y.; Li, Y.*; Wang, S.*, Pyridinic-N-Dominated Doped Defective Graphene as a Superior Oxygen Electrocatalyst for Ultrahigh-Energy-Density Zn-Air Batteries. ACS Energy Lett. 2018, 3 (5), 1183.

8.   Anandhababu, G.; Huang, Y.; Babu, D.; Wu, M.; Wang, Y.*, Oriented Growth of ZIF-67 to Derive 2D Porous CoPO Nanosheets for Electrochemical-/Photovoltage-Driven Overall Water Splitting. Adv. Funct. Mater. 2018, 28 (9).

9.   Chen, Z.; Wang, Q.; Zhang, X.; Lei, Y.*; Hu, W.; Luo, Y.; Wang, Y.*, N-doped defective carbon with trace Co for efficient rechargeable liquid electrolyte-/all-solid-state Zn-air batteries. Sci. Bull. 2018, 63 (9), 548-555.

10.  Guo, J.; Yan, X.; Liu, Q.; Li, Q.; Xu, X.; Kang, L.*; Cao, Z.*; Chai, G.*; Chen, J.; Wang, Y.; Yao, J., The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 2018, 46, 347-355.

11.  Xie, J.; Liu, Q.; Huang, Y.; Wu, M.; Wang, Y.*, A porous Zn cathode for Li-CO2 batteries generating fuel-gas CO. J. Mater. Chem. A 2018, 6 (28), 13952-13958.

12.  Yang, R.; Xie, J.; Liu, Q.; Huang, Y.; Lv, J.; Ghausi, M. A.; Wang, X.;  Peng, Z.; Wu, M.; Wang, Y.*, A trifunctional Ni-N/P-O-codoped graphene electrocatalyst enables dual-model rechargeable Zn-CO2/Zn-O2 batteries. J. Mater. Chem. A 2019, 7 (6), 2575-2580.

13.  Zhao, X.; Abbas, S. C.; Huang, Y.; Lv, J.; Wu, M.; Wang, Y.*, Robust and Highly Active FeNi@NCNT Nanowire Arrays as Integrated Air Electrode for Flexible Solid-State Rechargeable Zn-Air Batteries. Adv. Mater. Interfaces 2018, 5 (9).

14.  Huang, Y.; Babu, D. D.; Wu, M.; Wang, Y.*, Synergistic Supports Beyond Carbon Black for Polymer Electrolyte Fuel Cell Anodes. Chemcatchem 2018, 10 (20), 4497-4508.

15.  Abbas, S. C.; Peng, Z.; Wu, J.; Anandhababu, G.; Babu, D.; Huang, Y.; Ghausi, M. A.; Wu, M.; Wang, Y.*, Novel N-Mo2C Active Sites for Efficient Solar-to-Hydrogen Generation. Chemelectrochem 2018, 5 (8), 1186-1190.

16.  Wang, W.; Babu, D. D.; Huang, Y.; Lv, J.; Wang, Y.*; Wu, M.*, Atomic dispersion of Fe/Co/N on graphene by ball-milling for efficient oxygen evolution reaction. Int. J. Hydrogen Energy 2018, 43 (22), 10351-10358.


2017年

 

1. Lv, J.; Abbas, S. C.; Huang, Y.; Liu, Q.; Wu, M.; Wang, Y.*; Dai, L.*, A photo-responsive bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy 2018, 43, 130-137.

2. Li, W. H.; Ding, K.; Tian, H. R.; Yao, M. S.; Nath, B.; Deng, W. H.; Wang, Y.*; Xu, G.*, Conductive MetalOrganic Framework Nanowire Array Electrodes for HighPerformance SolidState Supercapacitors. Adv. Funct. Mater. 2017, 27 (27).

3. Wang, Q.; Lei, Y.; Chen, Z.; Wu, N.; Wang, Y.*; Wang, B.; Wang, Y.*, Fe/Fe3C@C nanoparticles encapsulated in N-doped graphene–CNTs framework as an efficient bifunctional oxygen electrocatalyst for robust rechargeable Zn–air batteries. J. Mater. Chem. A 2018, 6 (2), 516-526.

4. Huang, Y.; Liu, Q.; Lv, J.; Babu, D. D.; Wang, W.; Wu, M.; Yuan, D.; Wang, Y.*, Co-intercalation of multiple active units into graphene by pyrolysis of hydrogen-bonded precursors for zinc–air batteries and water splitting. J. Mater. Chem. A 2017, 5 (39), 20882-20891.

5. Shi, P.; Yi, J.; Liu, T.; Li, L.; Zhang, L.; Sun, C.; Wang, Y.; Huang, Y.*; Cao, R.*, Hierarchically porous nitrogen-doped carbon nanotubes derived from core–shell ZnO@zeolitic imidazolate framework nanorods for highly efficient oxygen reduction reactions. J. Mater. Chem. A 2017, 5 (24), 12322-12329.

6. Babu, D. D.; Huang, Y.; Anandhababu, G.; Ghausi, M. A.; Wang, Y.*, Mixed-Metal-Organic Framework Self-Template Synthesis of Porous Hybrid Oxyphosphides for Efficient Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2017, 9 (44), 38621-38628.

7. Abbas, S. C.; Wu, J.; Huang, Y.; Babu, D. D.; Anandhababu, G.; Ghausi, M. A.; Wu, M.; Wang, Y.*, Novel strongly coupled tungsten-carbon-nitrogen complex for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2018, 43 (1), 16-23.


2016年

1. Liu, Q.; Wang, Y.*; Dai, L.*; Yao, J., Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries. Adv. Mater. 2016, 28 (15), 3000-3006.

2. Abbas, S. C.; Ding, K.; Liu, Q.; Huang, Y.; Bu, Y.; Wu, J.; Lv, J.; Ghausi, M. A.; Wang, Y.*, Si–C–F decorated porous carbon materials: A new class of electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2016, 4 (20), 7924-7929.

3. Ding, K.; Liu, Q.; Bu, Y.; Meng, K.; Wang, W.; Yuan, D.*; Wang, Y.*, High surface area porous polymer frameworks: Potential host material for lithium–sulfur batteries. J. Alloys Compd. 2016, 657, 626-630.

4. Li, T.; Huang, Y.; Ding, K.; Wu, P.; Abbas, S. C.; Ghausi, M. A.; Zhang, T.*; Wang, Y.* Newly designed PdRuBi/N-Graphene catalysts with synergistic effects for enhanced ethylene glycol electro-oxidation. Electrochimica Acta 2016, 191, 940-945.

5. Anandhababu, G.; Abbas, S. C.; Lv, J.; Ding, K.; Liu, Q.; Babu, D. D.; Huang, Y.; Xie, J.; Wu, M.; Wang, Y.*, Highly exposed Fe-N4 active sites in porous poly-iron-phthalocyanine based oxygen reduction electrocatalyst with ultrahigh performance for air cathode. Dalton Trans. 2017, 46 (6), 1803-1810.

6. Bu, Y.; Wu, J.; Zhao, X.; Ding, K.; Liu, Q.; Huang, Y.; Lv, J.; Wang, Y.*, Sandwich-type porous carbon/sulfur/polyaniline composite as cathode material for high-performance lithium–sulfur batteries. RSC Adv. 2016, 6 (106), 104591-104596.

7. Ding, K.; Liu, Q.; Bu, Y.; Huang, Y.; Lv, J.; Wu, J.; Abbas, S. C.; Wang, Y.*, Scalable synthesis of nano-sandwich N-doped carbon materials with hierarchical-structure for energy conversion and storage. RSC Adv. 2016, 6 (96), 93318-93324.


Copyright:The Wang Research Group. Technology Support:Technical support center
Phone:+86-0591-63173109,Mail:wangyb@fjirsm.ac.cn
Address:155 Yangqiao Road West Fuzhou,350002,P.R.China
Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences