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Figure 1 (Color online) Schematic representation in the design, advanced characterization techniques, and applications of MOFs
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Figure 2 (Color online) Green synthesis and structures of MOFs!"*!
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Figure 3 (Color online) Schematic diagram of the relationship between the microstructure, properties and functions of MOF characterized by large-

scale scientific device technology!®® %!
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FeUR, PR GRL AN RIS, Reg it TR
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TR 22 e A BRSO Rl 2 A RN T2 i
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B 4 (RGN TRER S RAEHIIMOFAEL (2) NPF-200 BI=AFZE T (b) MEM-11SHEZE PR R E45H 0% (c) MFM-10171
MFM-190(R)fZ5 #3733 1%, (d) NHiZEMFM-300(Sc) B 7 o 0

Figure 4 (Color online) Schematic diagram of MOFs for energy gas storage. (a) Three major cages of NPF-2001""; (b) the different cage structures in
MEM-115 frameworks!'°”; (c) structure of MFM-101 and MFM-190(R)!'%; (d) binding sites between NH; and MFM-300(Sc) !

HKUST-11 U0 R Heg e e v AR =F & AL i, 78
JAN65 bar I, CH,AYMEFHEA267 cm®/em’(STP), W AL
FEREPRE.

CoHp A b Tolk S R, [ L A m] T
THABUR, (HH S RIEYE N 2 it E i i ok THE K
PohR. Tolk b5 RIGE % B Oy A T RER A A, il
HAEME S AL P 4l 2B, Yang AU 105G 1 i,
e, F3E . mESLSEAPLE ARSI AT R CH PR
SO AT HAR A . AN, Zentkne FmsSAE 1
JGBIMFEM-190(NO,) I T % & i Co H, W Jff 5+
(320 cm’/g, 298 KF11 bar)([&l4(c))!'*%.

NHE A RE IR AN AT 5, (R B A
J PR T A7 5 1 . Hong % A\ 5E 2 BAT
TR & RO IMOF M BHA FI TNHFEA. B, Mg,
(dobpdc)7E298 KA1 barihf it NH ;W fi & 7] ik 3|
23.9 mmol/g, & i T M1 2L A7) i) A e WA B
SRIM, FHTFNHy5 48 Ho D s AR AR, NH IR
Bt 2 MR AIOE N 230 . Yang@ A 100891081091
5T — R E S EECOH) R EMOFM £ MFM-
300(Al). MFM-300(V). MFM-300(Fe). MFM-300
(Cr). MFM-300(Sc)HIMFM-300(Ti). 5% & ¥, MFM-
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R b fa vk, R T LS N H A7 6 P fE
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VEREME, RTAESEPRARE S P T 3K,

COBE R Z Ak TR R Rk, HAligext
Tl ARG 2 4 B 8 . Zhang A2 1
FEI4 B AT 5. (QOMS)F R, TF & T — R FNCOFERE
PO ZEEMOFAARE, 380 o X T AR 0 356 Fr A o e 45
T T 2R A A B COmEEEEmE. Hr,
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Figure 5 (Color online) The greenhouse gas and toxic gas capture performance of MOFs. (a) Isotherms of MAF-stu-1 for CO, at different
temperatures (273-373 K)!"'%; (b) isotherms of MAF-2ME for CO and other gases (CO,, CH,, O,, Ny, H,) at 298 K!''?); (¢) isotherms of Mo-gallate, Co-
gallate and Ni-gallate for SO, at 298 K!''*); (d) isotherm of MFM-520 for NO, at different temperatures (298-333 K)!"!!
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Figure 6 (Color online) Properties of MOFs for separation of industrial chemicals. (a) Isotherms of HIAM-402 for C;Hg and C;Hg (298 K); (b)
breakthrough curves of C3H¢/C;Hg (v/v, 95/5) on HIAM-4021"%; (¢) isotherms of ZU-62 for Xe and Kr (273 and 298 K); (d) breakthrough curves of
Xe/Kr (v/v, 20/80) at 273 K and 1 bar)!"'"; (e) isotherms of FJI-Y11 for H, and D, at 77 and 87 K; (f) breakthrough curves of Hy/Do/Ne (v/v, 10/80/80)
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Figure 7 (Color online) Dyes encapsulated nanoscale metal-organic
frameworks for multimode temperature sensing with high spatial
resolution!'*!
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Figure 8 (Color online) Selective detection of organic amines used by MMCF-41"!1. (a) Perspective view of a single pore in MA@MMCF-4
adsorbate, along the ¢ axis, showing methyl amine guest molecules held in MMCF-4; (b) details of host-guest interactions in MA@MMCEF-4; (c)

degrees of torsional freedom for L in MMCF-4 and MA@MMCF-4
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Figure 9 (Color online) MOF proton conductors and their applications. (a) Schematic diagram of the proton hopping mechanism and carrier
mechanism; (b) proton conductive MOF design strategy; (c) utilization of one-dimensional MOF (NH,4);[Zr(H,/3PO,);] for fuel cells application!"**); (d)
Zr-TCPBP MOF fluorescence-based pH sensor''*’; (e) MOF-805 film formic acid vapor sensor'"*"); (f) Cu-TCPP thin film-based proton crystal field-
effect transistor!'*"); (g) Cuy(CuTCPP)/Mg-Al-LDH(NO;) heterojunction thin film proton rectifier!'>?
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Figure 10 (Color online) Enhanced guest species stability and substrate enrichment/preactivation based on MOFs. (a) Structure and properties of
MAg,,@Ui0-66-NH, catalysts''’); (b) schematic representation of the synergetic compartmentalization and pore-hydrophobization strategy for
stabilizing and activating TL in fatty acid-modified NU-1003""""); (c) schematic depicting the importance of a NP@MOF interface to activate an inert
Kolbe-Schmitt (KS) reaction and in situ monitor its unconventional regioselectivity, notably at an ambient operation of 1 atm and 25°C"%); (d)
theoretical calculations of the interaction of cinnamaldemyde with Fe trimers or Cr trimers!'"’
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Figure 11 (Color online) Regulated reaction pathways/selectivity or charge/energy transfer processes based on MOFs. (a) The synthetic
multicomponent host-guest catalyst system reported here for the hydrogenation of carbon dioxide to methanol, formic acid or formate ester!'*®. (b)

Schematic diagram for different conversion and selectivity in the direct CO esterification with MN over Pd@UiO-66-X (X=-

H, -NO,, -NH,) and Pd/

Ui0-66["""!. (c) The bilayer in the illustration represents a section of the liposome. The HER-MOF for hydrogen evolution is incorporated between the
hydrophobic chains, and the WOR-MOF for water oxidation is in the aqueous phase!'*"!. (d) Schematic diagrams of the SBUs for the construction of
TBAPy-Zr NS and TCPP-Zr NS and the schematic illustration of the acceptor-on-donor-NS model!"*”
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Over the past three decades, porous materials have attracted great attention in many research fields, including physics, chemistry
and materials science. Metal-organic frameworks (MOFs), as a class of crystalline porous materials, constructed by metal ions/
clusters and organic ligands via coordination self-assembly, featuring atomically precise and highly tailorable structures, which
have broad applications in various fields of natural science. MOFs demonstrate compatibility with a diverse range of materials,
including metal nanoparticles, polymers, metal oxides, metal complexes, organic molecules and even biological macromolecules
such as enzymes and DNA. This versatility facilitates the construction of composites using MOFs and various guest species. By
employing approaches such as direct or post-synthetic modification of ligands and metal secondary building units within the MOF
framework, as well as introducing guest species, researchers can achieve meticulous modulation of the structural and functional
properties of MOFs. From a fundamental science perspective, the interactions between MOFs and guest species are varied,
encompassing van der Waals forces, hydrogen bonds, electrostatic interactions, m-m interactions, coordination interactions and
more. These interactions are influenced by multiple factors, including the structural characteristics of MOFs, such as pore size,
properties of metal nodes and organic ligands and framework flexibility; the properties of guest molecules, including size, shape,
functional groups and chemical properties, as well as external environmental factors like temperature, pressure and solvent effects.
In consideration of the large number of MOF-related reviews reported in recent years, this article provides a comprehensive
overview of the green synthesis and structures of MOFs, advanced in-situ characterization techniques and their applications and
prospects in various fields, including gas adsorption and separation, fluorescence sensing, proton conduction, catalysis and
industry. Traditional synthesis methods have significantly limited the large-scale production and industrialization of MOFs. In this
review, we first introduced the green synthesis of MOFs and their distinctive structural advantages, such as stability and pore
characteristics, in detail. Subsequently, we systematically summarise advanced characterization techniques employed to
investigate the relationship between the microstructure and properties of MOFs. The properties of MOFs are intricately influenced
by their intrinsic structural characteristics, the physico-chemical properties of guest molecules, and various external
environmental conditions. Given this complex interplay, the structural characterization of MOFs is of paramount importance.
Hence, it is essential to characterize the structures of MOFs to understand their functions and enhance their properties Utilising
advanced characterization techniques to analyze MOF structures and properties is critical for comprehending their functions and
optimizing their performance. The scientific facilities, such as advanced light sources, spallation neutron sources, nuclear
magnetic resonance spectrometers and electron microscopes, provide sophisticated experimental techniques and methodologies.
Via the employment of advanced characterization methodologies to investigate the structure-activity correlation toward important
applications of MOFs, theoretical foundations can be established for the rational design and controllable fabrication of function-
oriented MOFs. Furthermore, we systematically introduce the exploration of MOFs in various functional applications, such as gas
adsorption and separation, fluorescence sensing, proton conduction, catalysis and industry, with particular emphasis on the
structure-performance relationship. Finally, the future development prospects of MOFs are discussed. Although significant
progress has been achieved, challenges such as precisely modulating structures and interactions, as well as enhancing stability for
practical applications remain unaddressed. Future research endeavors will be centered on the development of novel MOFs, in-
depth exploration of interaction mechanisms, expansion of application fields and enhancement of transdisciplinary research. This
will promote the further advancement of MOFs, thereby creating more opportunities to address scientific and practical challenges.

metal-organic framework, synthesis and characterization, gas sorption and separation, fluorescent sensor, proton
conduction, catalysis
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