中国科学院 ARP系统 继续教育网 English 邮箱登录 网站地图
您现在的位置:首页>新闻动态>科技资讯
日媒:LED照明技术突破方向
更新日期:2014-07-18  

  LED照明第二幕】(一)刷新基本构造,突破发光效率、成本和亮度壁垒  

  【日经BP社报道】白色LED由日亚化学工业开发出基本构造,并实现了广泛普及。但如今市场对LED照明的需求越来越多样化,仅凭以往的技术框架已经无法满足市场需求。现在,不仅仅是改良,基本构造各异的技术逐渐出现。这些技术具有取代以往技术的可能性。这些革新性技术将开拓白炽灯泡和荧光灯以外的新照明用途。 

  以往的白色LED大多指以日亚化学工业1996年推出的技术为基础开发的LED。这类产品一般组合使用在蓝宝石基板上生长GaN晶体制作的蓝色LED与黄色发光荧光材料YAG*,从而形成白光。 

  *YAG=钇(Y)铝(Al)石榴石(Garnet)。这里是指在由Y3Al5O12构成的石榴石构造材料中添加铈离子(Ce3)的材料。日亚化学工业在LED荧光材料中采用了YAG与镓(Ga)钆(Gd)石榴石(GGG)的化合物。 

  日亚化学的技术无疑是在与其他白色发光LED技术的竞争中脱颖而出的一项优秀技术。不过,由于技术成熟度比较高,性能进一步提高的余地较小。日亚化学工业在2010年初试制成功以20mA的电流实现了249lm/W高发光效率LED时就表示“技术已经接近极限”,宣布追求发光效率的研究和学术发表将会告一段落。 

  另一方面,伴随着LED在照明市场上的作用越来越大,对性能的要求也呈现高度化和多样化,具体表现为(1)提高发光效率;(2)大幅削减制造成本;(3)实现高亮度、(4)提高显色指数、降低LED特有的眩光,等等需求。而以往的白色LED技术已经无法充分应对这些需求,因而出现市场增长停滞态势(图1)。 

1:锁定目标打破壁垒的行动加速 

  打破LED照明市场增长停滞局面的4个技术方向。发光效率、价格、亮度和显色指数等一般呈此消彼长的关系,很难同时提高。今后LED的发展趋势将是根据要求大幅改变技术,从而至少大幅提高其中一方面的性能。来源:日经技术在线   

  最大限度努力确保性能 

  此前,具备高发光效率和大光通量的LED照明产品为设法满足(1)~(4)的需求,把精力集中在了为数不多的技术选项中。例如,发光效率接近200lm/W的直管型LED灯通过为各芯片加载小电流使之以低亮度发光,从而实现高效率,同时通过大量排列这种芯片来确保灯具整体所需光通量(图2)。 

2:效率的提高与亮度的提高此消彼长 

  LED灯的电流密度与发光效率的选择示例。以几mA/mm2的超低电流密度驱动发光效率近200 lm/W的直管型LED灯,通过大量排列LED芯片确保光通量。大光通量COB也基本采取相同的战略。来源:日经技术在线 

  采用这种设计的原因之一是,LED芯片的发光特性存在“光效下降(Droop)现象”。电流密度越小发光效率越高,电流密度增大,发光效率则会不断降低。也可以说,发光效率与亮度属于此消彼长的关系。 

  当然了,无论怎么削减电流密度,也无法超越LED芯片本来的发光效率极限。因此,LED灯具厂商纷纷设法获得发光效率尽量高的LED芯片。他们采取的办法不仅仅是与技术实力高的LED芯片厂商签订合作协议。 

  因为即使是同一家厂商以相同的条件制造的LED芯片,发光效率也有高有低,性能并不稳定。为了从这些性能高低不均的产品中,得到发光效率比标准品高的芯片,LED灯具厂商展开了竞争。例如,爱丽思欧雅玛“选择的是上等品,用金枪鱼来比喻的话相当于肉质鲜美的‘腹部’部分”(爱丽思欧雅玛执行董事、LED事业本部本部长石田敬)。不过,如果只使用高性能的芯片,则无法确保市场要求的数量。因此,该公司根据性能与数量来全盘考虑产品性能参数。 

  眩光和显色指数低也是课题 

  以往的高效率直管型LED灯为各芯片加载小电流还有其他原因。即如果为芯片加载大电流,各芯片的亮度会变得非常高,眩光比较严重。会导致亮度不均,灯具十分晃眼。这样就无法取代以面状均匀发光的荧光灯。另外,现有白色LED还存在一个课题,即如果优先确保发光效率,显色指数会降低。 

  旨在取代汞灯等大光通量灯具的COBChip On Board)也与直管型LED灯一样,采取大量排列LED芯片,以较低的电流密度驱动的战略。这是为了兼顾大光通量和高发光效率,并抑制眩光。不过,排列大量芯片的话,COB的面积必然会增大。这样就难以用于汽车前灯和房间的吊灯等想在有限的面积内确保大光通量(即高亮度),而且想实现高发光效率的用途。 

  根据需要的性能选择技术 

  上面介绍的这些方法很难满足想在灯泡和荧光灯以外的用途广泛使用LED的市场要求。因此,LED照明的用途开拓一直未取得进展。在这种情况下,通过引进基本构造不同于以往白色LED的技术,来解决上述课题的行动日益加速(图1)。上述(1)~(4)的需求可根据需要确保的性能来采取完全不同的技术。 

  关于(1)发光效率,美国科锐公司等的研发品实现了303lm/W、量产品实现了208lm/W的高数值(图3)。该公司的LED是在碳化硅(SiC)基板上生长GaN晶体制造的。最初的构造就不同于日亚化学工业的白色LED技术。 

3:在电流密度上没有差别 

  a)为科锐公司的研究开发和量产化成果。(b)为科锐与日亚化学工业的开发品的电流密度和发光效率的关系。(b)的电流密度值全部是《日经电子》推测的。来源:日经技术在线 

  这种差别在量产阶段体现得比研究开发阶段更明显。以电流密度来比较科锐和日亚化学工业的LED发光效率,除了303lm/W产品以外,日亚化学工业的优势更明显(图3b))。但科锐投放量产品的时间比日亚化学工业等其他竞争公司早12年。 

  LED照明第二幕】(二)绿色LED取得突破,利用Si基板大幅削减成本  

   【日经BP社报道】 多色LED达到400lm/W 

       科锐公司的技术还存在“谜团”。该公司20143月发布了发光效率为303 lm/W的白色LED,这个效率超过了以往的白色LED技术的发光效率理论极限(图4a))。对此很多观点认为,“应该是采用了与蓝色LED和黄色荧光材料的组合不同的技术”(某LED技术人员)。 

  

4:改变技术的话,理论极限将超过400 lm/W 

  以不同方式实现的白色LED的发光效率理论极限。在以往的组合蓝色LEDYAG荧光材料的方法中,294 lm/W就是极限了,而在组合RGB或者在RGB中添加琥珀色的RGBA发光LED中,理论发光效率可达到400 lm/W左右。(图由《日经电子》根据美国标准技术研究所(NIST)的资料制作)。来源:日经技术在线。 

  实际上,如果采用构造与以往的白色LED不同的技术,发光效率的理论极限要高得多。若不使用荧光材料,而是组合以红色(R)、绿色(G)和蓝色(B)分别发光的LED来形成白色光,还有望实现409 lm/W的超高发光效率(图4b))。 

  绿色LED发光效率低 

  利用多色LED形成白色光的想法以前就有。但输给了日亚化学工业的技术。主要有两点原因。第一,多色方式要想维持白色,需要根据各色LED发光状态的时间变化来控制各LED的驱动电流。 

  第二,与红色和蓝色LED相比,绿色LED的发光效率太低(图5)。绿色LED是在GaN中添加铟(In),增加发光波长实现的。但生长晶体时非常难控制In的组成比,无法制作高品质晶体。 

  5RGBRGBA方式的关键在于提高绿色发光的效率 

  RGB等各色发光的LED目前的外部量子效率。紫色和蓝色发光的LED利用InGaN系、黄色和红色发光的LED利用AlGaInP系半导体制作。一直到最近,绿色发光LED在哪种组合的LED中都难以实现高发光效率。(图:名古屋大学天野研究室) 

  调色功能成为LED照明的轴心 

  不过,最近出现了重新挑战这种多色LED方式的企业,这就是荷兰皇家飞利浦。该公司采用多色LED方式,于20134月开发出了发光效率为200lm/W的直管型LED灯“TLED”。针对存在课题的绿色发光改进了方法,确保了所需的发光效率。这是通过组合蓝色LED与自主开发的高效率绿色荧光材料实现的。 

  另外,飞利浦还导入了根据各色LED发光状态的时间变化来控制各LED驱动电流的机制,从而能一直保持白色状态。利用该机制,还实现了可选择不同颜色的调色功能。 

  飞利浦把这种基于多色LED的调色功能与利用通信功能远程控制照明器具的智能照明功能组合在一起,作为LED照明的重要附加值提供。估计这是打算重新构筑LED照明产品群的战略。201210月,该公司上市了可显示1677万色的LED灯泡“hue”。另外还推出了有10多种颜色的LED封装。 

  绿色LED取得突破 

  针对多色LED方式,还有的研究人员不依赖荧光材料,而是全力开发具备高发光效率的绿色LED。比如名古屋大学研究生院工学系研究科教授天野浩的研究室(图6)。最近,该研究室已有眉目实现外部量子效率(EQE)高达约60%的绿色LED。而在此之前,EQE最高只有20%左右。 

6:将实现超高效率绿色发光LED 

  名古屋大学天野研究室等开发的高效率绿色LED的概要。绿色LED采用In含量较多的InGaN晶体,需要对温度等晶体生长条件进行绝妙的控制。天野研究室通过用激光监控晶体状态来随时保持最佳生长条件,制作了高效率绿色LED。来源:日经技术在线。

  此前,很多研究人员和企业都放弃了提高绿色LEDInGaN晶体品质。因为,只要晶体生长时的温度稍有偏差,就会出现In过剩或者不足的情况。 

  天野研究室采取的是实时、详细地观察晶体生长的方法。在晶体生长时边照射3种波长的激光,边观察晶体状态,根据情况调整温度等生长条件。天野介绍说,“接下来要对结果进行详细分析和评测”,通过与高效率红色LED和蓝色LED等组合,“应该能实现接近300 lm/W的效率”(天野)。 

  新基板蕴藏着巨大的可能性 

  在对白色LED的要求中,(2)制造成本、(3)高亮度化以及(4)超越显色指数和眩光极限的技术大多都与新基板有关。这些技术不使用蓝宝石基板,而是在其他基板上生长GaN晶体制作LED(图7)。可以选择SiC基板、Si基板以及GaN基板等。 

7:利用不同的基板推进开发 

  生长LEDGaN晶体的不同基板种类以及各自的优点和课题。Si基板作为大幅降低LED成本的撒手锏受到期待,GaN基板在需要大电流密度的用途备受关注(a)。蓝宝石基板方面也有人在尝试采取一些措施,以兼顾发光效率和大电流密度(be)。(图片由各公司和大学提供) 

  这些基板虽然各有各的课题,但优点是都蕴藏着能大幅超越以往白色LED技术的冲击力,有望开拓LED照明的新用途。 

  此外,也有想利用蓝宝石基板提高发光效率和支持大电流密度的研究开发(图8bd))。这些开发大多都是在基板上稍微施加一些特殊加工,目前还没形成主流技术,不过为解决存在的课题,正在加速开发。新基板将在与蓝宝石基板的竞争中,加速提高性能。 

  利用Si基板大幅削减成本 

  在新基板技术中,有望(2)大幅降低制造成本的,是在Si基板上生长GaN晶体的“GaN on Si”技术。该技术最近突然开始受到关注。 

  GaN on Si技术的最大特点是,制造装置可使用普通的半导体用装置。这样就有望大幅削减包括封装工序在内的制造成本。也在推进GaN on Si技术研发的名古屋大学的天野预测,“采用GaN on Si技术可将LED封装价格降至1/4”。 

  GaN on Si技术还有其他优点。比如通过采用半导体制造技术,可提高加工效率,能与其他电路集成等,有望催生新的附加值。 

   另外,GaN on Si并不是新技术。该技术虽然备受期待,但直到最近才开始推进实用化,这是因为一直未能解决技术课题(图8)。例如,由于GaNSi的晶格常数之差和热膨胀系数之差较大,不容易在Si基板上生长高品质GaN晶体。因为热膨胀系数不同,存在晶体破损和硅晶圆曲翘的课题。制作的LED发光效率也比较低,很难追上性能领先的蓝宝石基板白色LED。另外还存在作为LED基板来说最致命的课题,即Si会吸收可见光。(记者:野泽哲生,《日经电子》) 

8:是GaN on Si001)还是GaN on Si111)? 

  GaN on Si基板技术的两个选项。Si001)基板一般难以生长GaN晶体,而选择Si111)基板的话,现有制造装置的加工效率会降低。东芝收购了采用Si111)的美国风险公司的技术,率先实现了产品化。而名古屋大学天野研究室通过将某金属层用于缓冲层,实现了在Si001)基板上的晶体生长。 

  相关阅读: 

  LED照明第二幕】(三)东芝快速推进实用化,实现“发光的线” 

  LED照明第二幕】(四)2mm见方芯片实现大光通量,光线“比白色还白” 

  LED照明第二幕】(五)基板表面加工技术也进入第二阶段 

  (来源:日经技术在线;http://china.nikkeibp.com.cn/news/elec/71043.html?limitstart=0