中国科学院 ARP系统 继续教育网 English 邮箱登录 网站地图
您现在的位置:首页>新闻动态>科技资讯
Nature报道单晶钙钛矿的溶液相合成新策略
更新日期:2020-08-26  

有机-无机杂化钙钛矿具有引人瞩目电子和光电特性,在包括太阳能电池、发光二极管(LED)、光电探测器等许多设备中有着巨大的应用潜力。当前研究较多是多晶材料,但与之相比,单晶杂化钙钛矿材料的缺陷和晶界更少,具有更优的光生载流子输运能力和稳定性。因此,钙钛矿单晶薄膜的制备一直是材料研究的热点话题。不过,在制备过程中控制单晶钙钛矿的形貌和组成非常困难,低成本、满足现有工业标准的制备过程更是未见报道,这些都制约了单晶钙钛矿材料的进一步发展。

近日,美国加州大学圣地亚哥分校(UCSD)徐升(Sheng Xu)教授课题组在Nature杂志上发表论文报道了一种新策略(A fabrication process for flexible single-crystal perovskite devices, Nature, 2020, 583, 790-795, DOI: 10.1038/s41586-020-2526-z),高效实现了杂化钙钛矿单晶薄膜的生长和制造,并可精确控制厚度(从600 nm100 μm)、面积(可达5.5 cm×5.5 cm)以及厚度方向上的组成梯度(例如,从MAPbI3MAPb0.5Sn0.5I3)。所制备的单晶杂化钙钛矿与直接生长在外延衬底上的钙钛矿的质量相当,并且具有一定的柔性(与厚度有关)。

研究者利用的制备方法被称为“基于溶液的刻印辅助外延生长和转移法(solution-based lithography-assisted epitaxial-growth-and-transfer。具体来说,以一块钙钛矿晶体(例如MAPbI3)作为衬底,其上覆盖一层通过刻印法刻蚀而图案化的聚合物膜(如Parylene)作为控制晶体生长的掩模(mask),再利用外延法在溶液中生长新的钙钛矿单晶。晶体会慢慢长高并在掩模上方扩展开,最终连接成没有晶界的单晶薄膜。

随后,生长出来的钙钛矿单晶薄膜可被剥离下来并随后转移至另外任意一种衬底上。XRD和光致发光光谱等测试显示,转移的单晶薄膜可以保持良好的结晶度,表面缺陷少,并且可以与衬底很好的粘附。

基于溶液的刻印辅助外延生长和转移法示意图及单晶薄膜表征。图片来源:Nature

研究者以2 μm厚的聚合物层为掩模,生长出1 cm × 1 cm × 2 μm尺寸的单晶钙钛矿薄膜。如果换成更刚性的掩模,可以获得尺寸更大(5.5 cm × 5.5 cm)的单晶钙钛矿薄膜。该方法对不同的钙钛矿晶体具有良好的普适性,外延生长的温度可以从80 °C160 °C

单晶薄膜厚度对载流子输运性能有着很大的影响。从600 nm2 μm,增加膜厚可以改善外量子效率(EQE),这是由于这个范围内的厚度增加可以使单晶薄膜集光能力增强、晶体质量变好。而在2 μm5 μm厚度范围内,载流子收集效率成为主要限制因素,所以EQE随单晶薄膜厚度的增加而减小。薄膜厚度对其光伏性能也有类似影响。控制薄膜厚度,也可调控单晶钙钛矿薄膜的力学性能。将单晶钙钛矿薄膜夹在两层高分子材料之间,可以一定程度弯曲,较小厚度的薄膜具有较小的弯曲半径,这表明这种脆性晶体具有良好的柔性。

有趣的是,如果在生长溶液中加入成分逐渐变化的铅锡混合物,可以获得具有连续梯度带隙的单晶钙钛矿薄膜。研究者以MAPb0.5Sn0.5I3作为铅锡钙钛矿的浓度上限,制备了成分从MAPbI3逐渐过渡到MAPb0.5Sn0.5I3的梯度单晶薄膜。与传统的异质结不同,梯度层中不存在结构界面,梯度单晶中的陷阱密度与纯MAPbI3单晶相当,几乎比具有界面的传统异质结低两个数量级。

单晶钙钛矿薄膜可以应用于LED的制备,像素尺寸从1 μm100 μm,在高分辨率、稳定性和量子效率的柔性显示器方面具有潜在的应用前景。同时,单晶钙钛矿薄膜还可应用于光伏器件。研究者制备了岛-桥式的柔性光伏器件阵列,每个0.5 cm × 0.5 cm的岛由金属桥互连。在初始反向扫描条件下,能量转换效率(PCE)最高值为20.04%。整个梯度单晶MAPb0.5+xSn0.5+xI3光伏阵列的PCE约为10.3%,工作面积约为9 cm2

单晶钙钛矿薄膜光伏器件测试。图片来源:Nature

(来源:X-MOL